πŸŽ‰ We're live! All services are free during our trial periodβ€”pricing plans coming soon.

How to Transcribe Mumbling Voices: Complete Guide to Unclear Speech Transcription

How to Transcribe Mumbling Voices: Complete Guide to Unclear Speech Transcription

Eric King

Eric King

Author


How to Transcribe Mumbling Voices: Complete Guide to Unclear Speech Transcription

Transcribing mumbling, unclear, or slurred speech is one of the most challenging tasks in speech-to-text conversion. Whether it's fast speech, unclear pronunciation, heavy accents, or low-volume audio, these issues can significantly impact transcription accuracy.
This comprehensive guide covers practical techniques and strategies for using OpenAI Whisper to transcribe unclear speech, including preprocessing methods, model selection, parameter optimization, and best practices.

Understanding Unclear Speech Challenges

Unclear speech can result from various factors:

Common Causes of Unclear Speech

  1. Fast speech rate - Words blend together
  2. Mumbling - Incomplete or unclear pronunciation
  3. Slurred speech - Words run together
  4. Heavy accents - Non-native pronunciation patterns
  5. Low volume - Quiet or distant speech
  6. Speech disorders - Medical conditions affecting clarity
  7. Emotional speech - Crying, laughing, or emotional states
  8. Age-related changes - Elderly speakers with unclear articulation
  9. Fatigue - Tired speakers with reduced clarity
  10. Alcohol/drugs - Impaired speech patterns

Why It's Challenging

  • Phoneme confusion - Similar sounds are hard to distinguish
  • Missing context - Unclear words lack surrounding context
  • Reduced signal quality - Lower volume = lower signal-to-noise ratio
  • Irregular patterns - Unpredictable speech patterns confuse models
  • Multiple issues combined - Often several problems occur together

Strategy 1: Use Larger Whisper Models

Larger Whisper models have better capability to handle unclear speech due to their increased capacity and training data.

Model Selection for Unclear Speech

import whisper

# For unclear/mumbling speech, use medium or large models
model = whisper.load_model("medium")  # Recommended starting point
# or
model = whisper.load_model("large")    # Best for very unclear speech
Model Comparison:
ModelClarity HandlingSpeedUse When
tiny⭐⭐⭐⭐⭐⭐Clear speech only
base⭐⭐⭐⭐⭐⭐Slightly unclear
small⭐⭐⭐⭐⭐⭐Moderately unclear
medium⭐⭐⭐⭐⭐⭐⭐Unclear speech (recommended)
large⭐⭐⭐⭐⭐⭐⭐Very unclear/mumbling (best)

Code Example

import whisper

def transcribe_unclear_speech(audio_path, clarity_level="unclear"):
    """
    Select model based on speech clarity level.
    
    Args:
        audio_path: Path to audio file
        clarity_level: "clear", "slightly_unclear", "unclear", "very_unclear"
    """
    model_sizes = {
        "clear": "base",
        "slightly_unclear": "small",
        "unclear": "medium",
        "very_unclear": "large"
    }
    
    model_size = model_sizes.get(clarity_level, "medium")
    print(f"Using {model_size} model for {clarity_level} speech")
    
    model = whisper.load_model(model_size)
    result = model.transcribe(audio_path)
    
    return result

# For mumbling or very unclear speech
result = transcribe_unclear_speech("mumbling_audio.mp3", clarity_level="very_unclear")
print(result["text"])
Key Takeaway: Always use medium or large models for unclear speech. The accuracy improvement is significant and worth the speed trade-off.

Strategy 2: Audio Preprocessing for Clarity

Preprocessing can enhance unclear speech before transcription:

Method 1: Volume Normalization and Amplification

import whisper
import librosa
import soundfile as sf
import numpy as np

def enhance_unclear_audio(audio_path, output_path="enhanced_audio.wav"):
    """
    Enhance unclear audio by normalizing and amplifying.
    """
    # Load audio
    audio, sr = librosa.load(audio_path, sr=16000)
    
    # Remove DC offset
    audio = audio - np.mean(audio)
    
    # Normalize to -3dB (safe amplification)
    max_val = np.max(np.abs(audio))
    if max_val > 0:
        target_db = -3.0
        current_db = 20 * np.log10(max_val) if max_val > 0 else -60
        gain_db = target_db - current_db
        gain_linear = 10 ** (gain_db / 20)
        audio = audio * gain_linear
    
    # Gentle high-pass filter to remove low-frequency noise
    audio = librosa.effects.preemphasis(audio, coef=0.97)
    
    # Save enhanced audio
    sf.write(output_path, audio, sr)
    
    return output_path

# Usage
enhanced_path = enhance_unclear_audio("quiet_mumbling.mp3")
model = whisper.load_model("medium")
result = model.transcribe(enhanced_path)

Method 2: Speech Enhancement with Spectral Gating

import whisper
import librosa
import soundfile as sf
import numpy as np

def enhance_speech_clarity(audio_path, output_path="enhanced.wav"):
    """
    Enhance speech clarity using spectral gating and normalization.
    """
    # Load audio
    audio, sr = librosa.load(audio_path, sr=16000)
    
    # Compute spectrogram
    stft = librosa.stft(audio)
    magnitude = np.abs(stft)
    phase = np.angle(stft)
    
    # Spectral gating - enhance speech frequencies (300-3400 Hz)
    freq_bins = librosa.fft_frequencies(sr=sr)
    speech_mask = (freq_bins >= 300) & (freq_bins <= 3400)
    
    # Enhance speech frequencies
    enhanced_magnitude = magnitude.copy()
    enhanced_magnitude[speech_mask] *= 1.5  # Boost speech frequencies
    
    # Reconstruct audio
    enhanced_stft = enhanced_magnitude * np.exp(1j * phase)
    enhanced_audio = librosa.istft(enhanced_stft)
    
    # Normalize
    enhanced_audio = librosa.util.normalize(enhanced_audio)
    
    # Save
    sf.write(output_path, enhanced_audio, sr)
    
    return output_path

# Usage
enhanced = enhance_speech_clarity("unclear_speech.mp3")
model = whisper.load_model("large")
result = model.transcribe(enhanced)

Method 3: Slow Down Fast Speech (Tempo Adjustment)

For fast, mumbling speech, slowing it down can help:
import whisper
import librosa
import soundfile as sf

def slow_down_speech(audio_path, speed_factor=0.85, output_path="slowed.wav"):
    """
    Slow down fast speech for better transcription.
    
    Args:
        audio_path: Input audio file
        speed_factor: Speed multiplier (0.85 = 15% slower)
        output_path: Output file path
    """
    # Load audio
    audio, sr = librosa.load(audio_path, sr=16000)
    
    # Time-stretch (slow down without pitch change)
    slowed_audio = librosa.effects.time_stretch(audio, rate=1/speed_factor)
    
    # Save
    sf.write(output_path, slowed_audio, sr)
    
    return output_path

# Usage: Slow down fast mumbling speech
slowed_path = slow_down_speech("fast_mumbling.mp3", speed_factor=0.8)
model = whisper.load_model("medium")
result = model.transcribe(slowed_path)

# Note: You may need to adjust timestamps if you slow down audio

Strategy 3: Optimize Whisper Parameters for Unclear Speech

Adjust Whisper's parameters to improve handling of unclear speech:

Optimal Parameters for Unclear Speech

import whisper

model = whisper.load_model("medium")

# Optimized settings for unclear/mumbling speech
result = model.transcribe(
    "unclear_audio.mp3",
    temperature=0.0,              # Most deterministic
    best_of=5,                    # Try multiple decodings (important!)
    beam_size=5,                  # Beam search for better accuracy
    patience=1.0,                 # Patience for beam search
    condition_on_previous_text=True,  # Use context from previous segments
    initial_prompt="This audio contains unclear or mumbling speech. "
                   "Focus on transcribing what can be understood, "
                   "even if some words are unclear.",
    language="en"  # Specify language if known
)

Why These Parameters Help

  • temperature=0.0: Most deterministic output, reduces randomness
  • best_of=5: Tries multiple decodings and picks the best - crucial for unclear speech
  • beam_size=5: Explores multiple transcription paths
  • condition_on_previous_text=True: Uses context to fill in unclear parts
  • initial_prompt: Provides context about unclear speech

Advanced Parameter Tuning

def transcribe_unclear_speech_advanced(audio_path, 
                                      model_size="medium",
                                      speech_type="mumbling"):
    """
    Advanced transcription with optimized parameters for unclear speech.
    """
    model = whisper.load_model(model_size)
    
    # Custom prompts based on speech type
    prompts = {
        "mumbling": "This audio contains mumbling or unclear speech. "
                   "Transcribe what can be understood clearly.",
        "fast": "This audio contains fast speech where words may blend together. "
               "Focus on accurate transcription of clear words.",
        "accent": "This audio contains speech with a heavy accent. "
                 "Transcribe phonetically accurate words.",
        "low_volume": "This audio has low volume or quiet speech. "
                     "Focus on transcribing audible words.",
        "slurred": "This audio contains slurred or unclear pronunciation. "
                  "Transcribe what is clearly audible."
    }
    
    initial_prompt = prompts.get(speech_type, prompts["mumbling"])
    
    result = model.transcribe(
        audio_path,
        temperature=0.0,
        best_of=5,
        beam_size=5,
        patience=1.0,
        condition_on_previous_text=True,
        initial_prompt=initial_prompt,
        language="en"
    )
    
    return result

# Usage
result = transcribe_unclear_speech_advanced(
    "mumbling_audio.mp3",
    model_size="large",
    speech_type="mumbling"
)

Strategy 4: Provide Context with Initial Prompts

Context helps Whisper understand unclear speech by providing expected vocabulary and topics.

Context-Specific Prompts

import whisper

model = whisper.load_model("medium")

# Medical context
result = model.transcribe(
    "unclear_medical.mp3",
    initial_prompt="This is a medical consultation with unclear speech. "
                  "Common terms include: symptoms, diagnosis, treatment, "
                  "medication, patient, doctor, examination."
)

# Technical context
result = model.transcribe(
    "unclear_technical.mp3",
    initial_prompt="This is a technical discussion about software development. "
                  "Terms include: API, database, server, deployment, "
                  "code, function, variable, algorithm."
)

# Business context
result = model.transcribe(
    "unclear_business.mp3",
    initial_prompt="This is a business meeting with unclear speech. "
                  "Topics include: revenue, sales, marketing, strategy, "
                  "budget, project, deadline, client."
)

# Interview context
result = model.transcribe(
    "unclear_interview.mp3",
    initial_prompt="This is an interview with unclear speech. "
                  "Common phrases: question, answer, experience, "
                  "background, education, work, career."
)

Dynamic Context Building

def transcribe_with_context(audio_path, context_keywords, model_size="medium"):
    """
    Transcribe unclear speech with domain-specific context.
    
    Args:
        audio_path: Audio file path
        context_keywords: List of relevant keywords/terms
        model_size: Whisper model size
    """
    model = whisper.load_model(model_size)
    
    # Build context prompt
    context_prompt = (
        "This audio contains unclear or mumbling speech. "
        f"Relevant terms and topics include: {', '.join(context_keywords)}. "
        "Focus on transcribing words that match this context."
    )
    
    result = model.transcribe(
        audio_path,
        temperature=0.0,
        best_of=5,
        beam_size=5,
        initial_prompt=context_prompt,
        language="en"
    )
    
    return result

# Usage
result = transcribe_with_context(
    "unclear_meeting.mp3",
    context_keywords=["project", "deadline", "budget", "team", "client", "delivery"],
    model_size="large"
)

Strategy 5: Chunking and Segment Processing

For very unclear audio, process in smaller chunks with context:
import whisper
from pydub import AudioSegment
import os

def transcribe_unclear_audio_chunked(audio_path, 
                                     chunk_length_seconds=30,
                                     model_size="medium"):
    """
    Transcribe unclear audio in chunks with context preservation.
    """
    model = whisper.load_model(model_size)
    
    # Load audio
    audio = AudioSegment.from_file(audio_path)
    duration_seconds = len(audio) / 1000.0
    
    all_segments = []
    all_text = []
    previous_text = ""  # Context from previous chunk
    
    # Process in chunks
    for start_seconds in range(0, int(duration_seconds), chunk_length_seconds):
        end_seconds = min(start_seconds + chunk_length_seconds, duration_seconds)
        
        # Extract chunk
        chunk = audio[start_seconds * 1000:end_seconds * 1000]
        chunk_path = f"chunk_{start_seconds}.wav"
        chunk.export(chunk_path, format="wav")
        
        # Build context prompt
        context_prompt = (
            "This audio contains unclear or mumbling speech. "
            f"Previous context: {previous_text[-200:]} "  # Last 200 chars
            "Continue transcribing with this context in mind."
        )
        
        # Transcribe chunk
        result = model.transcribe(
            chunk_path,
            temperature=0.0,
            best_of=5,
            beam_size=5,
            initial_prompt=context_prompt,
            language="en"
        )
        
        # Adjust timestamps for chunk position
        for segment in result["segments"]:
            segment["start"] += start_seconds
            segment["end"] += start_seconds
        
        all_segments.extend(result["segments"])
        all_text.append(result["text"])
        previous_text = result["text"]
        
        # Clean up
        os.remove(chunk_path)
    
    return {
        "text": " ".join(all_text),
        "segments": all_segments
    }

# Usage
result = transcribe_unclear_audio_chunked("very_unclear_audio.mp3", chunk_length_seconds=20)
print(result["text"])

Strategy 6: Post-Processing and Correction

After transcription, apply corrections for common unclear speech patterns:

Common Unclear Speech Patterns

import re

def correct_unclear_transcription(text):
    """
    Apply common corrections for unclear speech transcriptions.
    """
    # Fix common mumbling patterns
    corrections = {
        r'\b(uh|um|er|ah)\s+': '',  # Remove filler words
        r'\s+': ' ',  # Normalize whitespace
        r'([.!?])\s*([A-Z])': r'\1 \2',  # Fix sentence spacing
    }
    
    corrected = text
    for pattern, replacement in corrections.items():
        corrected = re.sub(pattern, replacement, corrected)
    
    # Capitalize sentences
    sentences = re.split(r'([.!?]\s+)', corrected)
    corrected = ''.join([
        s.capitalize() if i % 2 == 0 else s 
        for i, s in enumerate(sentences)
    ])
    
    return corrected.strip()

# Usage
result = model.transcribe("unclear_audio.mp3")
corrected_text = correct_unclear_transcription(result["text"])
print(corrected_text)

Confidence-Based Filtering

def filter_low_confidence_segments(result, min_confidence=0.5):
    """
    Filter out segments with low confidence (likely unclear).
    """
    filtered_segments = []
    filtered_text_parts = []
    
    for segment in result["segments"]:
        # Check if segment has confidence/avg_logprob
        avg_logprob = segment.get("avg_logprob", -1.0)
        confidence = np.exp(avg_logprob) if avg_logprob > -10 else 0.5
        
        if confidence >= min_confidence:
            filtered_segments.append(segment)
            filtered_text_parts.append(segment["text"])
        else:
            # Mark as unclear
            filtered_segments.append({
                **segment,
                "text": "[UNCLEAR]",
                "unclear": True
            })
    
    return {
        "text": " ".join(filtered_text_parts),
        "segments": filtered_segments
    }

# Usage
result = model.transcribe("unclear_audio.mp3")
filtered = filter_low_confidence_segments(result, min_confidence=0.4)

Complete Pipeline for Unclear Speech

Here's a complete, production-ready pipeline:
import whisper
import librosa
import soundfile as sf
import numpy as np
import os
from pathlib import Path

class UnclearSpeechTranscriber:
    """Complete pipeline for transcribing unclear/mumbling speech."""
    
    def __init__(self, model_size="medium"):
        """Initialize transcriber."""
        print(f"Loading {model_size} model...")
        self.model = whisper.load_model(model_size)
        print("βœ“ Model loaded")
    
    def enhance_audio(self, audio_path, output_path="enhanced_temp.wav"):
        """Enhance unclear audio."""
        # Load
        audio, sr = librosa.load(audio_path, sr=16000)
        
        # Remove DC offset
        audio = audio - np.mean(audio)
        
        # Normalize
        audio = librosa.util.normalize(audio)
        
        # Gentle preemphasis
        audio = librosa.effects.preemphasis(audio, coef=0.97)
        
        # Save
        sf.write(output_path, audio, sr)
        return output_path
    
    def transcribe(self, audio_path, 
                  enhance=True,
                  context_keywords=None,
                  speech_type="mumbling"):
        """
        Transcribe unclear speech with full pipeline.
        
        Args:
            audio_path: Input audio file
            enhance: Whether to enhance audio first
            context_keywords: List of relevant keywords
            speech_type: Type of unclear speech
        """
        temp_files = []
        
        try:
            # Step 1: Enhance audio if requested
            if enhance:
                print("Enhancing audio...")
                enhanced_path = self.enhance_audio(audio_path)
                temp_files.append(enhanced_path)
                process_path = enhanced_path
            else:
                process_path = audio_path
            
            # Step 2: Build context prompt
            prompts = {
                "mumbling": "This audio contains mumbling or unclear speech.",
                "fast": "This audio contains fast speech where words blend together.",
                "accent": "This audio contains speech with a heavy accent.",
                "low_volume": "This audio has low volume or quiet speech.",
                "slurred": "This audio contains slurred or unclear pronunciation."
            }
            
            base_prompt = prompts.get(speech_type, prompts["mumbling"])
            
            if context_keywords:
                context_part = f" Relevant terms: {', '.join(context_keywords)}."
            else:
                context_part = ""
            
            initial_prompt = base_prompt + context_part + " Focus on transcribing clearly audible words."
            
            # Step 3: Transcribe with optimized parameters
            print("Transcribing...")
            result = self.model.transcribe(
                process_path,
                temperature=0.0,
                best_of=5,
                beam_size=5,
                patience=1.0,
                condition_on_previous_text=True,
                initial_prompt=initial_prompt,
                language="en"
            )
            
            print(f"βœ“ Transcription complete")
            print(f"  Language: {result['language']}")
            print(f"  Duration: {result['segments'][-1]['end']:.2f}s")
            
            return result
            
        finally:
            # Clean up temporary files
            for temp_file in temp_files:
                if os.path.exists(temp_file):
                    os.remove(temp_file)

# Usage
transcriber = UnclearSpeechTranscriber(model_size="large")

result = transcriber.transcribe(
    "mumbling_audio.mp3",
    enhance=True,
    context_keywords=["meeting", "project", "deadline", "team"],
    speech_type="mumbling"
)

print("\nTranscription:")
print(result["text"])

Best Practices Summary

For Transcribing Unclear/Mumbling Speech:
  1. βœ… Use larger models - medium or large for unclear speech
  2. βœ… Enhance audio - Normalize, amplify, and filter before transcription
  3. βœ… Optimize parameters - Use temperature=0.0, best_of=5, beam_size=5
  4. βœ… Provide context - Use initial_prompt with relevant keywords
  5. βœ… Process in chunks - For very long unclear audio
  6. βœ… Post-process - Correct common patterns and filter low confidence
  7. βœ… Specify language - When known, improves accuracy
  8. βœ… Multiple attempts - Try different parameter combinations
Model Selection:
  • Slightly unclear: small model
  • Moderately unclear: medium model (recommended)
  • Very unclear/mumbling: large model
  • Critical accuracy: large + enhancement + optimized parameters

Common Issues and Solutions

Issue 1: Whisper Skips Unclear Words

Solution: Use best_of=5 and beam_size=5 to explore more transcription paths.

Issue 2: Low Accuracy on Fast Mumbling

Solution: Slow down audio with tempo adjustment, then transcribe.

Issue 3: Heavy Accent + Mumbling

Solution: Use large model, provide accent context, and enhance audio.

Issue 4: Very Quiet Mumbling

Solution: Amplify and normalize audio, use large model with context.

Issue 5: Inconsistent Results

Solution: Use temperature=0.0 for deterministic output, process multiple times and compare.

Use Cases

1. Elderly Speech Transcription

model = whisper.load_model("large")
result = model.transcribe(
    "elderly_speech.mp3",
    initial_prompt="This audio contains speech from an elderly person "
                   "with age-related unclear pronunciation. "
                   "Transcribe clearly audible words.",
    temperature=0.0,
    best_of=5
)

2. Medical Consultation with Unclear Speech

model = whisper.load_model("large")
result = model.transcribe(
    "unclear_medical.mp3",
    initial_prompt="This is a medical consultation with unclear speech. "
                   "Medical terms: symptoms, diagnosis, treatment, medication, "
                   "patient, examination, prescription.",
    temperature=0.0,
    best_of=5
)

3. Interview with Heavy Accent

model = whisper.load_model("medium")
result = model.transcribe(
    "accented_interview.mp3",
    initial_prompt="This interview contains speech with a heavy accent. "
                   "Focus on transcribing phonetically accurate words.",
    language="en",  # Or specify actual language
    temperature=0.0,
    best_of=5
)

Conclusion

Transcribing unclear or mumbling speech is challenging but achievable with the right approach. The key strategies are:
  1. Use larger models (medium or large)
  2. Preprocess audio to enhance clarity
  3. Optimize parameters for unclear speech
  4. Provide context through initial prompts
  5. Post-process results to correct common patterns
Key takeaways:
  • Always use medium or large models for unclear speech
  • Audio enhancement can significantly improve results
  • Context prompts help Whisper understand unclear words
  • best_of=5 is crucial for exploring multiple transcription paths
  • Processing in chunks helps with very long unclear audio
For more information about Whisper transcription, check out our guides on Whisper Accuracy Tips, Whisper for Noisy Background, and Whisper Best Settings.

Looking for a professional speech-to-text solution that handles unclear speech? Visit SayToWords to explore our AI transcription platform with optimized models for challenging audio conditions.

Try It Free Now

Try our AI audio and video service! You can not only enjoy high-precision speech-to-text transcription, multilingual translation, and intelligent speaker diarization, but also realize automatic video subtitle generation, intelligent audio and video content editing, and synchronized audio-visual analysis. It covers all scenarios such as meeting recordings, short video creation, and podcast productionβ€”start your free trial now!

Convert MP3 to TextConvert Voice Recording to TextVoice Typing OnlineVoice to Text with TimestampsVoice to Text Real TimeVoice to Text for Long AudioVoice to Text for VideoVoice to Text for YouTubeVoice to Text for Video EditingVoice to Text for SubtitlesVoice to Text for PodcastsVoice to Text for InterviewsInterview Audio to TextVoice to Text for RecordingsVoice to Text for MeetingsVoice to Text for LecturesVoice to Text for NotesVoice to Text Multi LanguageVoice to Text AccurateVoice to Text FastPremiere Pro Voice to Text AlternativeDaVinci Voice to Text AlternativeVEED Voice to Text AlternativeInVideo Voice to Text AlternativeOtter.ai Voice to Text AlternativeDescript Voice to Text AlternativeTrint Voice to Text AlternativeRev Voice to Text AlternativeSonix Voice to Text AlternativeHappy Scribe Voice to Text AlternativeZoom Voice to Text AlternativeGoogle Meet Voice to Text AlternativeMicrosoft Teams Voice to Text AlternativeFireflies.ai Voice to Text AlternativeFathom Voice to Text AlternativeFlexClip Voice to Text AlternativeKapwing Voice to Text AlternativeCanva Voice to Text AlternativeSpeech to Text for Long AudioAI Voice to TextVoice to Text FreeVoice to Text No AdsVoice to Text for Noisy AudioVoice to Text with TimeGenerate Subtitles from AudioPodcast Transcription OnlineTranscribe Customer CallsTikTok Voice to TextTikTok Audio to TextYouTube Voice to TextYouTube Audio to TextMemo Voice to TextWhatsApp Voice Message to TextTelegram Voice to TextDiscord Call TranscriptionTwitch Voice to TextSkype Voice to TextMessenger Voice to TextLINE Voice Message to TextTranscribe Vlogs to TextConvert Sermon Audio to TextConvert Talking to WritingTranslate Audio to TextTurn Audio Notes to TextVoice TypingVoice Typing for MeetingsVoice Typing for YouTubeSpeak to TypeHands-Free TypingVoice to WordsSpeech to WordsSpeech to Text OnlineSpeech to Text for MeetingsFast Speech to TextTikTok Speech to TextTikTok Sound to TextTalking to WordsTalk to TextAudio to TypingSound to TextVoice Writing ToolSpeech Writing ToolVoice DictationLegal Transcription ToolMedical Voice Dictation ToolJapanese Audio TranscriptionKorean Meeting TranscriptionMeeting Transcription ToolMeeting Audio to TextLecture to Text ConverterLecture Audio to TextVideo to Text TranscriptionSubtitle Generator for TikTokCall Center TranscriptionReels Audio to Text ToolTranscribe MP3 to TextTranscribe WAV File to TextCapCut Voice to TextCapCut Speech to TextVoice to Text in EnglishAudio to Text EnglishVoice to Text in SpanishVoice to Text in FrenchAudio to Text FrenchVoice to Text in GermanAudio to Text GermanVoice to Text in JapaneseAudio to Text JapaneseVoice to Text in KoreanAudio to Text KoreanVoice to Text in PortugueseVoice to Text in ArabicVoice to Text in ChineseVoice to Text in HindiVoice to Text in RussianWeb Voice Typing ToolVoice Typing Website