🎉 We're live! All services are free during our trial period—pricing plans coming soon.

Whisper for YouTube Videos: Complete Guide to Transcribing YouTube Content

Whisper for YouTube Videos: Complete Guide to Transcribing YouTube Content

Eric King

Eric King

Author


Introduction

Transcribing YouTube videos is essential for content creators, researchers, and anyone who needs to convert video content into searchable, accessible text. OpenAI Whisper excels at transcribing YouTube videos thanks to its ability to handle:
  • Long-form content (hours of video)
  • Multiple languages and accents
  • Background music and noise
  • Conversational speech patterns
  • Variable audio quality
This guide covers everything you need to know about using Whisper to transcribe YouTube videos, from downloading content to generating professional subtitles.

Why Use Whisper for YouTube Videos?

Advantages Over Other Solutions

1. Accuracy
  • Handles YouTube's variable audio quality
  • Works well with background music
  • Supports multiple languages automatically
2. Cost-Effective
  • Free to run locally
  • No per-minute API costs
  • Process unlimited videos
3. Privacy
  • Process videos locally
  • No data sent to third parties
  • Full control over your content
4. Flexibility
  • Customizable transcription settings
  • Multiple output formats (SRT, VTT, TXT)
  • Batch processing capabilities
5. Long-Form Support
  • Handles hours-long videos
  • Efficient chunking strategies
  • Memory optimization

Prerequisites

Before starting, ensure you have:
  • Python 3.8+ installed
  • FFmpeg installed (for audio extraction)
  • yt-dlp or youtube-dl (for downloading videos)
  • OpenAI Whisper installed
  • (Optional) NVIDIA GPU for faster processing

Install Required Tools

Install FFmpeg:
macOS:
brew install ffmpeg
Ubuntu/Debian:
sudo apt update
sudo apt install ffmpeg
Windows: Download from ffmpeg.org
Install yt-dlp:
pip install yt-dlp
Install Whisper:
pip install openai-whisper

Method 1: Basic YouTube Transcription Script

Here's a simple Python script to download and transcribe a YouTube video:
import whisper
import yt_dlp
import os

def download_youtube_audio(url, output_path="audio"):
    """Download audio from YouTube video"""
    ydl_opts = {
        'format': 'bestaudio/best',
        'outtmpl': f'{output_path}/%(title)s.%(ext)s',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'wav',
            'preferredquality': '192',
        }],
    }
    
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info = ydl.extract_info(url, download=True)
        filename = ydl.prepare_filename(info)
        # Replace extension with .wav
        audio_file = filename.rsplit('.', 1)[0] + '.wav'
        return audio_file

def transcribe_audio(audio_file, model_name="base"):
    """Transcribe audio using Whisper"""
    model = whisper.load_model(model_name)
    result = model.transcribe(audio_file)
    return result

# Usage
video_url = "https://www.youtube.com/watch?v=VIDEO_ID"
audio_file = download_youtube_audio(video_url)
transcription = transcribe_audio(audio_file)

print(transcription["text"])

Method 2: Complete YouTube Transcription Tool

Here's a more complete solution with subtitle generation:
import whisper
import yt_dlp
import os
from pathlib import Path

class YouTubeTranscriber:
    def __init__(self, model_name="base", output_dir="output"):
        self.model = whisper.load_model(model_name)
        self.output_dir = Path(output_dir)
        self.output_dir.mkdir(exist_ok=True)
        
    def download_audio(self, url):
        """Download audio from YouTube"""
        ydl_opts = {
            'format': 'bestaudio/best',
            'outtmpl': str(self.output_dir / 'audio' / '%(title)s.%(ext)s'),
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'wav',
                'preferredquality': '192',
            }],
            'quiet': True,
            'no_warnings': True,
        }
        
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(url, download=True)
            filename = ydl.prepare_filename(info)
            audio_file = filename.rsplit('.', 1)[0] + '.wav'
            video_title = info.get('title', 'video')
            return audio_file, video_title
    
    def transcribe(self, audio_file, language=None):
        """Transcribe audio file"""
        print(f"Transcribing {audio_file}...")
        result = self.model.transcribe(
            audio_file,
            language=language,
            verbose=False
        )
        return result
    
    def save_transcript(self, result, video_title, format='txt'):
        """Save transcription in various formats"""
        base_name = self.output_dir / video_title
        
        if format == 'txt':
            with open(f"{base_name}.txt", "w", encoding="utf-8") as f:
                f.write(result["text"])
        
        elif format == 'srt':
            self._save_srt(result, f"{base_name}.srt")
        
        elif format == 'vtt':
            self._save_vtt(result, f"{base_name}.vtt")
        
        print(f"Saved {format.upper()} file: {base_name}.{format}")
    
    def _save_srt(self, result, filename):
        """Save as SRT subtitle format"""
        with open(filename, "w", encoding="utf-8") as f:
            for i, segment in enumerate(result["segments"], 1):
                start = self._format_timestamp(segment["start"])
                end = self._format_timestamp(segment["end"])
                text = segment["text"].strip()
                f.write(f"{i}\n{start} --> {end}\n{text}\n\n")
    
    def _save_vtt(self, result, filename):
        """Save as WebVTT subtitle format"""
        with open(filename, "w", encoding="utf-8") as f:
            f.write("WEBVTT\n\n")
            for segment in result["segments"]:
                start = self._format_timestamp(segment["start"], vtt=True)
                end = self._format_timestamp(segment["end"], vtt=True)
                text = segment["text"].strip()
                f.write(f"{start} --> {end}\n{text}\n\n")
    
    def _format_timestamp(self, seconds, vtt=False):
        """Format timestamp for subtitles"""
        hours = int(seconds // 3600)
        minutes = int((seconds % 3600) // 60)
        secs = int(seconds % 60)
        millis = int((seconds % 1) * 1000)
        
        if vtt:
            return f"{hours:02d}:{minutes:02d}:{secs:02d}.{millis:03d}"
        else:
            return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
    
    def process_video(self, url, language=None, formats=['txt', 'srt']):
        """Complete workflow: download, transcribe, save"""
        # Download audio
        audio_file, video_title = self.download_audio(url)
        
        # Transcribe
        result = self.transcribe(audio_file, language)
        
        # Save in requested formats
        for fmt in formats:
            self.save_transcript(result, video_title, fmt)
        
        return result

# Usage
transcriber = YouTubeTranscriber(model_name="base")
result = transcriber.process_video(
    "https://www.youtube.com/watch?v=VIDEO_ID",
    formats=['txt', 'srt', 'vtt']
)

Handling Long YouTube Videos

Long videos require special handling to avoid memory issues and maintain accuracy.

Chunking Strategy

import whisper
from pydub import AudioSegment
import math

def transcribe_long_video(audio_file, model_name="base", chunk_length=60):
    """Transcribe long video by chunking"""
    model = whisper.load_model(model_name)
    
    # Load audio
    audio = AudioSegment.from_wav(audio_file)
    duration_seconds = len(audio) / 1000.0
    
    # Calculate number of chunks
    num_chunks = math.ceil(duration_seconds / chunk_length)
    
    all_segments = []
    current_time = 0
    
    for i in range(num_chunks):
        start_ms = i * chunk_length * 1000
        end_ms = min((i + 1) * chunk_length * 1000, len(audio))
        
        # Extract chunk
        chunk = audio[start_ms:end_ms]
        chunk_file = f"chunk_{i}.wav"
        chunk.export(chunk_file, format="wav")
        
        # Transcribe chunk
        print(f"Processing chunk {i+1}/{num_chunks}...")
        result = model.transcribe(chunk_file)
        
        # Adjust timestamps
        for segment in result["segments"]:
            segment["start"] += current_time
            segment["end"] += current_time
            all_segments.append(segment)
        
        current_time += chunk_length
        
        # Clean up
        os.remove(chunk_file)
    
    # Combine results
    full_text = " ".join([seg["text"] for seg in all_segments])
    
    return {
        "text": full_text,
        "segments": all_segments,
        "language": result["language"]
    }

Using VAD (Voice Activity Detection)

For better chunking, use VAD to split at natural pauses:
import whisper
from pyannote.audio import Pipeline

def transcribe_with_vad(audio_file, model_name="base"):
    """Transcribe using VAD for better chunking"""
    # Load VAD pipeline
    vad_pipeline = Pipeline.from_pretrained(
        "pyannote/voice-activity-detection",
        use_auth_token="YOUR_TOKEN"
    )
    
    # Detect speech segments
    vad_segments = vad_pipeline(audio_file)
    
    # Load Whisper model
    model = whisper.load_model(model_name)
    
    all_segments = []
    
    for segment in vad_segments.itertracks():
        start = segment.start
        end = segment.end
        
        # Extract segment
        # (Use ffmpeg or pydub to extract segment)
        
        # Transcribe segment
        result = model.transcribe(segment_audio)
        
        # Adjust timestamps
        for seg in result["segments"]:
            seg["start"] += start
            seg["end"] += start
            all_segments.append(seg)
    
    return {
        "text": " ".join([s["text"] for s in all_segments]),
        "segments": all_segments
    }

Batch Processing Multiple Videos

Process multiple YouTube videos efficiently:
import whisper
import yt_dlp
from concurrent.futures import ThreadPoolExecutor
import json

class BatchYouTubeTranscriber:
    def __init__(self, model_name="base", max_workers=2):
        self.model = whisper.load_model(model_name)
        self.max_workers = max_workers
    
    def process_video(self, url):
        """Process single video"""
        try:
            # Download audio
            audio_file = self._download_audio(url)
            
            # Transcribe
            result = self.model.transcribe(audio_file)
            
            # Save results
            self._save_result(url, result)
            
            return {"url": url, "status": "success", "result": result}
        except Exception as e:
            return {"url": url, "status": "error", "error": str(e)}
    
    def process_batch(self, urls):
        """Process multiple videos in parallel"""
        with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
            results = list(executor.map(self.process_video, urls))
        
        return results
    
    def _download_audio(self, url):
        """Download audio (same as before)"""
        # ... download logic ...
        pass
    
    def _save_result(self, url, result):
        """Save transcription result"""
        video_id = url.split("watch?v=")[-1]
        filename = f"transcript_{video_id}.json"
        
        with open(filename, "w") as f:
            json.dump(result, f, indent=2)

# Usage
urls = [
    "https://www.youtube.com/watch?v=VIDEO1",
    "https://www.youtube.com/watch?v=VIDEO2",
    "https://www.youtube.com/watch?v=VIDEO3",
]

transcriber = BatchYouTubeTranscriber(model_name="base", max_workers=2)
results = transcriber.process_batch(urls)

Optimizing for YouTube Content

Audio Quality Considerations

YouTube videos have variable audio quality. Optimize your processing:
def optimize_audio_for_whisper(audio_file):
    """Optimize audio for better Whisper accuracy"""
    from pydub import AudioSegment
    
    audio = AudioSegment.from_wav(audio_file)
    
    # Normalize audio
    audio = audio.normalize()
    
    # Convert to mono (Whisper works better with mono)
    audio = audio.set_channels(1)
    
    # Set sample rate to 16kHz (Whisper's preferred rate)
    audio = audio.set_frame_rate(16000)
    
    # Remove silence at beginning/end
    audio = audio.strip_silence(silence_len=1000, silence_thresh=-50)
    
    # Export
    optimized_file = audio_file.replace(".wav", "_optimized.wav")
    audio.export(optimized_file, format="wav")
    
    return optimized_file

Model Selection for YouTube Videos

ModelBest ForProcessing Time (10 min video)
tinyQuick previews, testing~1-2 minutes
baseGeneral content, good balance~3-5 minutes
smallHigh-quality content~5-8 minutes
mediumProfessional content, accuracy critical~10-15 minutes
largeMaximum accuracy needed~20-30 minutes
Recommendation: Use base or small for most YouTube videos.

Generating YouTube-Compatible Subtitles

SRT Format (YouTube Standard)

def create_youtube_srt(result, filename):
    """Create YouTube-compatible SRT file"""
    with open(filename, "w", encoding="utf-8") as f:
        for i, segment in enumerate(result["segments"], 1):
            start = format_timestamp(segment["start"])
            end = format_timestamp(segment["end"])
            text = segment["text"].strip()
            
            # YouTube SRT format
            f.write(f"{i}\n{start} --> {end}\n{text}\n\n")

def format_timestamp(seconds):
    """Format timestamp for SRT"""
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    secs = int(seconds % 60)
    millis = int((seconds % 1) * 1000)
    return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"

Uploading Subtitles to YouTube

After generating SRT files, upload them to YouTube:
  1. Go to YouTube Studio
  2. Select your video
  3. Go to "Subtitles" section
  4. Click "Add language"
  5. Upload your SRT file
  6. Review and publish

Advanced Features

Multi-Language Detection

Whisper automatically detects language, but you can specify:
# Auto-detect language
result = model.transcribe(audio_file)

# Specify language
result = model.transcribe(audio_file, language="en")
result = model.transcribe(audio_file, language="zh")
result = model.transcribe(audio_file, language="es")

Translation to English

# Translate to English while transcribing
result = model.transcribe(
    audio_file,
    task="translate",
    language="es"  # Source language
)
# Result will be in English

Word-Level Timestamps

# Get word-level timestamps
result = model.transcribe(
    audio_file,
    word_timestamps=True
)

# Access word timestamps
for segment in result["segments"]:
    for word_info in segment["words"]:
        word = word_info["word"]
        start = word_info["start"]
        end = word_info["end"]
        print(f"{word}: {start}-{end}")

Performance Optimization

GPU Acceleration

Use GPU for faster processing:
import torch

# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# Load model on GPU
model = whisper.load_model("base", device=device)

Batch Processing

Process multiple segments in batches:
def transcribe_batch(audio_files, model_name="base", batch_size=4):
    """Transcribe multiple files in batches"""
    model = whisper.load_model(model_name)
    
    results = []
    for i in range(0, len(audio_files), batch_size):
        batch = audio_files[i:i+batch_size]
        batch_results = model.transcribe_batch(batch)
        results.extend(batch_results)
    
    return results

Memory Optimization

For long videos, process in chunks and clear memory:
import gc
import torch

def transcribe_with_memory_management(audio_file):
    """Transcribe with memory cleanup"""
    model = whisper.load_model("base")
    
    # Process in chunks
    chunks = split_audio(audio_file)
    
    results = []
    for i, chunk in enumerate(chunks):
        result = model.transcribe(chunk)
        results.append(result)
        
        # Clear cache
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
    
    return merge_results(results)

Best Practices

1. Choose Appropriate Model Size

  • tiny/base: For quick previews or testing
  • small: For most YouTube content (recommended)
  • medium/large: For high-accuracy requirements

2. Optimize Audio Before Transcription

  • Normalize audio levels
  • Convert to mono
  • Set sample rate to 16kHz
  • Remove excessive silence

3. Handle Long Videos Properly

  • Use chunking for videos > 30 minutes
  • Add overlap between chunks (3-5 seconds)
  • Use VAD for natural segmentation

4. Save Multiple Formats

  • TXT: For reading and editing
  • SRT: For YouTube upload
  • VTT: For web players
  • JSON: For programmatic use

5. Batch Process When Possible

  • Process multiple videos in parallel
  • Use GPU for faster processing
  • Monitor memory usage

6. Verify Language Settings

  • Let Whisper auto-detect when unsure
  • Specify language for better accuracy
  • Handle multilingual content appropriately

Common Issues and Solutions

Issue 1: Poor Audio Quality

Problem: Low-quality YouTube audio affects transcription
Solutions:
  • Download best available audio quality
  • Use audio normalization
  • Consider using medium or large model

Issue 2: Background Music

Problem: Music interferes with speech recognition
Solutions:
  • Whisper handles music well, but you can:
  • Use audio separation tools (Spleeter, Demucs)
  • Increase model size for better accuracy

Issue 3: Multiple Speakers

Problem: Hard to distinguish speakers
Solutions:
  • Use speaker diarization (pyannote.audio)
  • Post-process with speaker labels
  • Consider using medium or large model

Issue 4: Long Processing Time

Problem: Transcription takes too long
Solutions:
  • Use GPU acceleration
  • Use smaller model (base instead of large)
  • Process in parallel batches
  • Use faster-whisper library

Issue 5: Memory Errors

Problem: Out of memory on long videos
Solutions:
  • Process in smaller chunks
  • Use CPU instead of GPU
  • Reduce model size
  • Clear cache between chunks

Complete Example: Production-Ready Script

Here's a complete, production-ready script:
#!/usr/bin/env python3
"""
YouTube Video Transcriber using OpenAI Whisper
Supports batch processing, multiple formats, and optimization
"""

import whisper
import yt_dlp
import os
import json
from pathlib import Path
from datetime import datetime

class YouTubeWhisperTranscriber:
    def __init__(self, model_name="base", output_dir="transcriptions"):
        self.model = whisper.load_model(model_name)
        self.output_dir = Path(output_dir)
        self.output_dir.mkdir(exist_ok=True)
        (self.output_dir / "audio").mkdir(exist_ok=True)
        (self.output_dir / "subtitles").mkdir(exist_ok=True)
    
    def download_audio(self, url):
        """Download audio from YouTube"""
        ydl_opts = {
            'format': 'bestaudio/best',
            'outtmpl': str(self.output_dir / 'audio' / '%(title)s.%(ext)s'),
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'wav',
                'preferredquality': '192',
            }],
            'quiet': True,
            'no_warnings': True,
        }
        
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(url, download=True)
            filename = ydl.prepare_filename(info)
            audio_file = filename.rsplit('.', 1)[0] + '.wav'
            video_info = {
                'title': info.get('title', 'Unknown'),
                'duration': info.get('duration', 0),
                'url': url,
                'id': info.get('id', '')
            }
            return audio_file, video_info
    
    def transcribe(self, audio_file, language=None):
        """Transcribe audio"""
        print(f"Transcribing: {audio_file}")
        result = self.model.transcribe(
            audio_file,
            language=language,
            verbose=False,
            word_timestamps=True
        )
        return result
    
    def save_results(self, result, video_info, formats=['txt', 'srt', 'json']):
        """Save transcription in multiple formats"""
        base_name = video_info['title'].replace('/', '_')
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        base_path = self.output_dir / "subtitles" / f"{base_name}_{timestamp}"
        
        if 'txt' in formats:
            with open(f"{base_path}.txt", "w", encoding="utf-8") as f:
                f.write(result["text"])
        
        if 'srt' in formats:
            self._save_srt(result, f"{base_path}.srt")
        
        if 'vtt' in formats:
            self._save_vtt(result, f"{base_path}.vtt")
        
        if 'json' in formats:
            result['video_info'] = video_info
            with open(f"{base_path}.json", "w", encoding="utf-8") as f:
                json.dump(result, f, indent=2, ensure_ascii=False)
        
        print(f"Saved transcriptions: {base_path}")
        return base_path
    
    def _save_srt(self, result, filename):
        """Save SRT subtitle file"""
        with open(filename, "w", encoding="utf-8") as f:
            for i, segment in enumerate(result["segments"], 1):
                start = self._format_timestamp(segment["start"])
                end = self._format_timestamp(segment["end"])
                text = segment["text"].strip()
                f.write(f"{i}\n{start} --> {end}\n{text}\n\n")
    
    def _save_vtt(self, result, filename):
        """Save WebVTT subtitle file"""
        with open(filename, "w", encoding="utf-8") as f:
            f.write("WEBVTT\n\n")
            for segment in result["segments"]:
                start = self._format_timestamp(segment["start"], vtt=True)
                end = self._format_timestamp(segment["end"], vtt=True)
                text = segment["text"].strip()
                f.write(f"{start} --> {end}\n{text}\n\n")
    
    def _format_timestamp(self, seconds, vtt=False):
        """Format timestamp"""
        hours = int(seconds // 3600)
        minutes = int((seconds % 3600) // 60)
        secs = int(seconds % 60)
        millis = int((seconds % 1) * 1000)
        
        if vtt:
            return f"{hours:02d}:{minutes:02d}:{secs:02d}.{millis:03d}"
        else:
            return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
    
    def process(self, url, language=None, formats=['txt', 'srt']):
        """Complete workflow"""
        # Download
        audio_file, video_info = self.download_audio(url)
        
        # Transcribe
        result = self.transcribe(audio_file, language)
        
        # Save
        output_path = self.save_results(result, video_info, formats)
        
        return result, output_path

# Usage
if __name__ == "__main__":
    transcriber = YouTubeWhisperTranscriber(model_name="base")
    
    video_url = input("Enter YouTube URL: ")
    result, output_path = transcriber.process(
        video_url,
        formats=['txt', 'srt', 'vtt', 'json']
    )
    
    print(f"\nTranscription complete!")
    print(f"Text length: {len(result['text'])} characters")
    print(f"Language detected: {result['language']}")
    print(f"Output saved to: {output_path}")

Conclusion

Using Whisper for YouTube video transcription provides a powerful, cost-effective solution for content creators and researchers. Key takeaways:
  1. Download audio using yt-dlp or youtube-dl
  2. Choose appropriate model based on accuracy vs speed needs
  3. Handle long videos with proper chunking
  4. Generate multiple formats (SRT, VTT, TXT)
  5. Optimize performance with GPU and batch processing
  6. Follow best practices for best results
With Whisper, you can transcribe YouTube videos accurately, efficiently, and cost-effectively, making your content more accessible and searchable.

Next Steps

  • Set up your environment - Install required tools
  • Try the basic script - Start with a simple video
  • Optimize for your needs - Adjust model and settings
  • Automate workflows - Build batch processing pipelines
  • Upload subtitles - Add to your YouTube videos
For more information, check out our guides on Whisper for Long-Form Transcription and Whisper Python Example.

Try It Free Now

Try our AI audio and video service! You can not only enjoy high-precision speech-to-text transcription, multilingual translation, and intelligent speaker diarization, but also realize automatic video subtitle generation, intelligent audio and video content editing, and synchronized audio-visual analysis. It covers all scenarios such as meeting recordings, short video creation, and podcast production—start your free trial now!

Convert MP3 to TextConvert Voice Recording to TextVoice Typing OnlineVoice to Text with TimestampsVoice to Text Real TimeVoice to Text for Long AudioVoice to Text for VideoVoice to Text for YouTubeVoice to Text for Video EditingVoice to Text for SubtitlesVoice to Text for PodcastsVoice to Text for InterviewsInterview Audio to TextVoice to Text for RecordingsVoice to Text for MeetingsVoice to Text for LecturesVoice to Text for NotesVoice to Text Multi LanguageVoice to Text AccurateVoice to Text FastPremiere Pro Voice to Text AlternativeDaVinci Voice to Text AlternativeVEED Voice to Text AlternativeInVideo Voice to Text AlternativeOtter.ai Voice to Text AlternativeDescript Voice to Text AlternativeTrint Voice to Text AlternativeRev Voice to Text AlternativeSonix Voice to Text AlternativeHappy Scribe Voice to Text AlternativeZoom Voice to Text AlternativeGoogle Meet Voice to Text AlternativeMicrosoft Teams Voice to Text AlternativeFireflies.ai Voice to Text AlternativeFathom Voice to Text AlternativeFlexClip Voice to Text AlternativeKapwing Voice to Text AlternativeCanva Voice to Text AlternativeSpeech to Text for Long AudioAI Voice to TextVoice to Text FreeVoice to Text No AdsVoice to Text for Noisy AudioVoice to Text with TimeGenerate Subtitles from AudioPodcast Transcription OnlineTranscribe Customer CallsTikTok Voice to TextTikTok Audio to TextYouTube Voice to TextYouTube Audio to TextMemo Voice to TextWhatsApp Voice Message to TextTelegram Voice to TextDiscord Call TranscriptionTwitch Voice to TextSkype Voice to TextMessenger Voice to TextLINE Voice Message to TextTranscribe Vlogs to TextConvert Sermon Audio to TextConvert Talking to WritingTranslate Audio to TextTurn Audio Notes to TextVoice TypingVoice Typing for MeetingsVoice Typing for YouTubeSpeak to TypeHands-Free TypingVoice to WordsSpeech to WordsSpeech to Text OnlineSpeech to Text for MeetingsFast Speech to TextTikTok Speech to TextTikTok Sound to TextTalking to WordsTalk to TextAudio to TypingSound to TextVoice Writing ToolSpeech Writing ToolVoice DictationLegal Transcription ToolMedical Voice Dictation ToolJapanese Audio TranscriptionKorean Meeting TranscriptionMeeting Transcription ToolMeeting Audio to TextLecture to Text ConverterLecture Audio to TextVideo to Text TranscriptionSubtitle Generator for TikTokCall Center TranscriptionReels Audio to Text ToolTranscribe MP3 to TextTranscribe WAV File to TextCapCut Voice to TextCapCut Speech to TextVoice to Text in EnglishAudio to Text EnglishVoice to Text in SpanishVoice to Text in FrenchAudio to Text FrenchVoice to Text in GermanAudio to Text GermanVoice to Text in JapaneseAudio to Text JapaneseVoice to Text in KoreanAudio to Text KoreanVoice to Text in PortugueseVoice to Text in ArabicVoice to Text in ChineseVoice to Text in HindiVoice to Text in RussianWeb Voice Typing ToolVoice Typing Website